Maximum weight vectors possess minimal uncertainty

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1977 J. Phys. A: Math. Gen. 10 L233
(http://iopscience.iop.org/0305-4470/10/12/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 13:48

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Maximum weight vectors possess minimal uncertainty

R Delbourgo and J R Fox
Department of Physics, University of Tasmania, Hobart, Tasmania, 7001, Australia

Received 6 July 1977

Abstract

An appropriate uncertainty measure for a compact Lie group is the invariant dispersion $$
(\Delta F)^{2}=\left\langle g^{r s}\left(F_{r}-\left\langle F_{r}\right\rangle\right)\left(F_{s}-\left\langle F_{s}\right\rangle\right\rangle\right\rangle .
$$

We prove that it is minimised for maximum weight vectors (of greatest length in the weight space), and those unitarily related to them.

In a recent paper (Delbourgo 1977) we examined the problem of how to define quasiclassical states (characterised by a least uncertainty) for O (3) and closely associated groups. Our investigation showed that the most natural measure of indeterminancy, the invariant dispersion,

$$
(\Delta J)^{2} \equiv\left\langle\boldsymbol{J}^{2}\right\rangle-\langle\boldsymbol{J}\rangle \cdot\langle\boldsymbol{J}\rangle
$$

was minimised for maximum weight angular momentum states

$$
\boldsymbol{J} \cdot \boldsymbol{n}|j j\rangle_{n}=j|j j\rangle_{n},
$$

and we guessed that the result carried over to arbitrary compact Lie groups; namely, the maximum weight vectors corresponded most closely to the classical situation of absolute precision. In this letter we would like to outline a simple proof of this conjecture.

Let F_{s} denote the set of generators of a compact Lie algebra obeying the commutation rules

$$
\left[F_{r}, F_{s}\right]=\mathrm{i} C_{r s}{ }^{t} F_{t} .
$$

The positive-definite Cartan metric

$$
g_{r s}=\frac{1}{2} C_{r p}{ }^{q} C_{q s}{ }^{p}
$$

and its inverse $g^{r s}$, can be used to construct the quadratic Casimir $F^{2} \equiv g^{r s} F_{r} F_{s}$. Following our $\mathrm{O}(3)$ analysis we contend that the most appropriate measure of quantum indeterminancy is the invariant dispersion (variance)

$$
\begin{equation*}
(\Delta F)^{2} \equiv\left\langle(\Delta \hat{F})^{2}\right\rangle \equiv\left\langle g^{r s}\left(F_{r}-\left\langle F_{r}\right\rangle\right)\left(F_{s}-\left\langle F_{s}\right\rangle\right)\right\rangle=\left\langle g^{r s}\left(F_{r} F_{s}-\left\langle F_{r}\right\rangle\left\langle F_{s}\right\rangle\right)\right\rangle \tag{1}
\end{equation*}
$$

We will now show that eigenvectors of the Casimirs F^{2}, F^{3}, \ldots have least ΔF when they are of maximum weight (i.e. have weight vectors of maximum length).

First we choose a canonical basis whereupon $g^{r s} \propto \delta^{r s}$, and make the conventional split into Cartan operators H_{k} (defining the rank) and $E_{ \pm \alpha}$ (changing the weights). As $(\Delta \hat{F})^{2}$ is a positive-definite operator, it has a lowest eigenvalue, and in that lowest
eigenstate the lowest expectation value is attained. The minimum dispersion states are therefore among the eigenstates of $(\Delta \hat{F})^{2}$, satisfying

$$
\left(F_{s} F_{s}-2 F_{s}\left(F_{s}\right\rangle_{\psi}+\left\langle F_{s}\right\rangle_{\psi}\left(F_{s}\right)_{\psi}\right)|\psi\rangle \propto|\psi\rangle
$$

But $|\psi\rangle$ is taken to be already an eigenvector of $F_{s} F_{s}$ (among other possible Casimirs). Therefore a necessary condition for minimal dispersion is

$$
\begin{equation*}
F_{s}\left\langle F_{s}\right\rangle_{\psi}|\psi\rangle \propto|\psi\rangle \tag{2}
\end{equation*}
$$

To find solutions of (2), first suppose that $|\psi\rangle$ is an eigenvector $|\boldsymbol{h}\rangle$ of the (rank) r commuting generators H_{k} which form a basis for the Cartan sub-algebra. Then

$$
\begin{array}{ll}
H_{k}|\boldsymbol{h}\rangle=h_{k}|\boldsymbol{h}\rangle, & k=1, \ldots, r, \tag{3}\\
\langle\boldsymbol{h}| E_{\alpha}|\boldsymbol{h}\rangle=0, & \text { all roots } \alpha,
\end{array}
$$

because of the step-up and -down action of the E_{α}. For generators F_{s} chosen so that r of them are the H_{k} (the others being Hermitian linear combinations of the E_{α}),

$$
F_{s}\left\langle F_{s}\right\rangle_{h}|\boldsymbol{h}\rangle=H_{k}\left\langle H_{k}\right\rangle_{h}|\boldsymbol{h}\rangle=h_{k} h_{k}|\boldsymbol{h}\rangle
$$

showing that any state $|\boldsymbol{h}\rangle$ solves (2), and ΔF is minimised when $\left\langle F_{s}\right\rangle\left\langle F_{s}\right\rangle$ is maximised, i.e. for greatest $|\boldsymbol{h}|^{2} \equiv h_{k} h_{k}$; namely for vectors of maximum weight.

The second part of the proof consists in finding the most general solutions of (2). For this we note that it is always possible to find a group transformation such that $F_{s} n_{s}$, with n a unit vector, is transformed into an element $H_{k} a_{k}$ in the Cartan sub-algebra, where a is a unit vector in r-dimensional space, i.e.

$$
U(n) F_{s} n_{s} U^{-1}(n)=H_{k} a_{k}(n)
$$

where $U(\boldsymbol{n})$ is an operator \dagger lying in the coset space G / H. The vectors $|\boldsymbol{h}\rangle$ are eigenvectors of this expression, so

$$
F_{s} n_{s} U^{-1}(\boldsymbol{n})|\boldsymbol{h}\rangle=h_{k} a_{k}(\boldsymbol{n}) U^{-1}(\boldsymbol{n})|\boldsymbol{h}\rangle
$$

or

$$
\begin{equation*}
\frac{F_{s}\left\langle F_{s}\right\rangle_{\psi}}{\left(\left\langle F_{t}\right\rangle_{\psi}\left\langle F_{t}\right\rangle_{\psi}\right)^{1 / 2}}|\psi\rangle=h_{k} a_{k}(n)|\psi\rangle \tag{4}
\end{equation*}
$$

if we set $U^{-1}(n)|\boldsymbol{h}\rangle=|\psi\rangle$ and choose $n_{s}=\left\langle F_{s}\right\rangle_{\psi} /\left(\left\langle F_{t}\right\rangle_{\psi}\left\langle F_{t}\right\rangle_{\psi}\right)^{1 / 2}$. For this choice of n, $a_{k}=h_{k} /|\boldsymbol{h}|$, as can be seen by taking the inner product of (4) with $|\psi\rangle$, yielding

$$
\left(\left\langle F_{s}\right\rangle_{\psi}\left\langle F_{s}\right\rangle_{\psi}\right)^{1 / 2}=h_{k} a_{k}
$$

But the left-hand side as an invariant under group transformations and is equal to $h_{k} h_{k} /|\boldsymbol{h}|$ when $U(\boldsymbol{n})=1$, i.e. $|\psi\rangle=|\boldsymbol{h}\rangle$, so that $a_{k}=h_{k} /|\boldsymbol{h}|$. Therefore $U^{-1}|\boldsymbol{h}\rangle$ solves (2) with eigenvalue $h_{k} h_{k}$. These vectors are none other than Perelomov's coherent states (Perelomov 1972).

Finally, to minimise ΔF, we need to maximise $\left\langle F_{s}\right\rangle\left\langle F_{s}\right\rangle$, and this is achieved by taking $|\boldsymbol{h}\rangle$ to be a maximum weight state. The foregoing shows that any vector $U|\boldsymbol{h}\rangle$ unitarily related to a maximum weight state equally well minimises ΔF. This is, of course, to be expected, as the choice of the sub-algebra basis $\left(H_{1}, \ldots, H_{r}\right)$ is not
\dagger For instance, if we are dealing with $\mathrm{O}(N)$ and the rotation operators $J_{\mu \nu} U J_{\mu \nu} n^{\mu \nu} U^{-1}=$ $J_{12} a^{12}+J_{34} a^{34}+\ldots$ and U is an orthogonal transformation which rotates the special tensor a into n. Similarly, if G is the group $S U(N), U F_{a}^{b} n_{b}^{a} U^{-1}=H_{1}^{1} a_{1}^{1}+H_{2}^{2} a_{2}^{2}+\ldots$ where U is a unitary transformation.
unique and the maximum weight eigenstates of any unitarily equivalent basis (the states $U|h\rangle$) should also minimise ΔF.

For illustration take $\operatorname{SU}(3)$ and representations $\boldsymbol{\Phi}_{\left(a_{1} \ldots a_{p}\right)}^{\left(b_{1} \ldots b_{a}\right)}$ labelled by the pair (p, q). In this case the least

$$
\Delta F \equiv\left(\frac{1}{2}\left\langle F_{b}^{a} F_{a}^{b}\right\rangle-\frac{1}{2}\left\langle F_{b}^{a}\right\rangle\left\langle F_{a}^{b}\right\rangle\right)^{1 / 2}
$$

equals $(p+q)^{1 / 2}$ and occurs, of course, for highest weight vectors like $\Phi_{(1 \ldots 1)}^{(2 \ldots 2)}$. The value of $\left\langle F_{a}^{b}\right\rangle\left\langle F_{b}^{c}\right\rangle\left\langle F_{c}^{a}\right\rangle$ is thereby completely determined and there is no point in considering uncertainties related to the cubic Casimir.

References

Delbourgo R 1977 J. Phys. A: Math. Gen. 10 1837-46
Peremolov A M 1972 Commun. Math. Phys. 26 222-34

